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bO~ N ! ) 1 N ~. THE REL IAB iLIT Y OF ~~JLT 1STATh SYST~~~ S

:~~~v i d  A. Butler

1. l n t r o d u & t i u n

Computing t’~. I•*ACL z 4 1 i . , h i l l t v  ot a complex system can i n v olv e

extremely I.tr~ t, amount t~ 
. .

~~ ~~n~;’ut ~it ton . Therefore • a number of more

ea~ i1v computed appro xit~ationa to t l i~~ syste m re ltability, based upon

minimal paths and m ~.‘l cut. • h.,v~ ~~~~ . 11). ( 7 )  . 1 11 ) .
( 1 4 ) .  Some of these appri.;ximationa are conservative In that they

. ,nder i ”i t iw . .s t t ’  z~~ system reliabtlttv , and the others are opt imistic in

I ~l.t t. t~~iC V  ov i~ re~;t ia..te. Thun . •~.i~~h approxima t ion i” actually a

re liability bound . To further rvduce the onp it it ions of system

t o  liability to t easible I v i ls , modu ls i  decu~~ usittofl!. of t oml iex

syst e~~~. have w ,-n i-x~’loit . 1  • both in t he i i  til.i t i n  of the exact system

reliabil ity m l  it. bounds 1 4 ) .

A 1  of t i e  v~~r~ n,n . o~~id  above has been limited to binary

coherent .~v~~ o-n i . Rm~t. m n t l v  a number ot investigators have begun to deal

with ‘~iiI ttstatc s’steas , in which components . .mn e x t t in more than tvo

~~~~~~~ ( 2 ) .  ( 5 ) .  ( j, ( i t ~~ . (12) ,  (1)) . Th ic  report will develop

re liability hounds f or mu l t i s ta te  •. vs t r ~ ’. analogous to those mentioned

above I t  ~~t n . i r .  ‘mv~~~~~n’.. The development of these results will be

similar to  that b r  their binary countE rparts , and readers interested

in the de ta i l;  of the pro o fs  in Sect t ’ n~ 2 and 3 may find It helpful to

refer back t o  the cor re .p’ nd ing  binary proofs.
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The ,i~’t.i z.ion used in this report follows . m. t t h a few exceptions ,

that cont~iined in ( 1 I, b

1) x • (z 1 x )  denotes the vector of component states .

i i)  C — (1, 2 , . . . . n) denotes the set of component labels.

iii) S — 0 , 1, . . . . H)  d i n t  i’. the set of component s t a t ’ , i.e.

c S for all I ~ C. h a t  states .sre tiered , with 0

being tIme worst state and M the les t.

Iv) The term . ‘ i;i~ teasing ’ and ‘decreasing ” are used in t~ sense

of “non-decreas ing” and “non—increasing ’ , resp e ctivtI- ~.

v) X - (X
1 

X )  denotes a random v.ctoi ‘1 component states.

V I  q 1~ 
• I’r rX

1 — I ‘ . C , j  C S.

v i i )  Q 1(j )  — P r ( X
1 

I C , j C S .

viii) A “perfo rmance—distribution vec to r ’ is a vecto r

v — ( v 0, v 1, ...
~~ 

v~ ) sa t Isfy ing 0 V
1 

1, v0 
• 1, and

V
1 1  ~ v

1
, I — 1, ..., M. F r  examp le , Q1 (

~) is such a

vec t o r,

1*) A “performance—dIstribution matrix” is a matrix all of whose

rows are perfor m ance — d i stribution vectors . For e xample ,

.( . )  is such a m a t r i x .

x) y c x means y~ ~ x 1 for  a l l  1 , and v 1 
< for some j,

xi)  U z~ — 1 — (7 (1 — z
1
).

1—1 i—I

xi i ) ~ : S~ S. • ( x )  is the system state , given the vectoT of

component States is x.

2
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x i i i)  When X 1, ... , are indep endent , we will wri te

• Pr(•(X) > m ) . and l4 ,(Q) • (H (Q) , H~ (Q), ..., H ( Q ) ) .

N o t t ~ that H (Q) is a periormance-distribution vector.

xiv) Script 1t’tters # , .f, P * , ~ w ill denote partitions

of C in to  N ~ 1 setS , a . f t ~., ~~~• (~~~~I P’. ... , P
H) wt~ere

P
1 C C . P~ ~ P

1 
is empty for i # j. and P~ • C.

xv) Given a ;. m r t l t  i ’ll .? x(.?) — (x 1
(.,’ ) ,  ... , x ( .#))  will

z~ (~P)
denote a vector in ~ for which I c P for all I.

(In tuitively , .? define. the state of each Component by

partit ioning the set C i components into “ + 1 subsets;

x(.,’’ j~~ t~~ ’ v.’,t o r  of component states corresponding to .f.)

There is S 1w-to-One correspondence between partitions

of C and vectors in S~~.

xv i) Given two par t i t ions 1 and * • we will define the

;~. x r t i t i n ;  ~~~• 1 V ~~ by

x
i

i ~ • max{x1(1 ) ,  x 1( H) )  I c C

and the ;~.art It io n .?e  I by

x
1
(.9) • m in{x

1
(1 ) ,  x 1

(H))  I c C

x v i i )  (k
1
, x) — (x1, .,., x~_ 1 , k, ,.., z ) .

3
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rhere Is no agreement on the most appropriate de f inition of

“mu1tt~at a t. coherent system ”. Almost no two definitions agree , the

d ifference. ranging from minor to major. .r i f t i t h (10) discusses and

compares a number of possible definitions . The definition we will use

in this report is on• proposed e~irlIer by the author [ 5 1, and is very

similar to one proposed in (l0J .

DefinitIon_1.1. The ordered p.ttr (C, •) is a multistate coherent

system it 4nd only if

I) •(O) • 0 and +( M)  M , where N • (II, ..,, N),

Ii) •(x) is in reasing in x ,

iii) t o t  every I — 1 , ..., n , there exists an z such that

x) > ;(O~~ x). 0

If some component i n a turall y has only states 0, ..., k, where

k N , one can nonetheless formally consider the component to also

have states k + I , .,., N , wh ich are operationally identical to

st ate k. and then simply take to be zero for I ~ k. Thus,

systems whose components have varying numbers of natural ~tates can

be accomsodated in the above definition .

DefInition 1.2. The multistate coherent sys tem (A, x) is a module

of the moltistate coherent system (C, ~
) if and only if A C C and

A AC• (x ( ~ 
) ,  x ) ,  where • Is a multistate coherent structure

A Ac

function, an d x , x denote those subvectors of x consisting of

coordinates which are in A , Ac , respectively . 0

4
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Definition 1. 3 . A modular deccs~~~ttion of a multistate coherent

system (C , •) is a set ot disjoint modules (A1, x 1) (A
r e X r ’

together with an or .4.~&.?tructur. ~ such that

I) * is a multistate coherent structure function,

ii) A 1, Ar partitions C,
A , A

iii) ,(z) • . ( x (z £ ) ,  • , x (x 5)
r 0

In the follow ing sections the criterion by which we will assess

the system perf :rnince is Pr(,(X) ‘ a)  where a — 1, ..., P1. This

cr i ter ion d i bf e i~ from some others which have been proposed , notably

E(o(Xfl, or E(u(~ (X))J, ( 6 J ,  (10) . To compare these criteria, consider

a very simple example of two syste ms having states 0, 1, 2. The firs t

system ha. a 502 chance of  working perfectly (be ing in state 2) and

a 502 chanco ot failing totall y (being in state 0). The second always

I. partially func t ioning (state 1). Under the E(•(X)) criterion ,

these two systems perform identically, yet the designer who only wanted

to avoid t~~ al I.~ilure would surely prefer the second . At a system level ,

the design specif ica t ions are likely to be of the for. ‘aeet or exceed

a cer ta in system state at lia st a certain percentage of time”, and

so argues in favor of a •Inimum—level—of-performance criterion . Zn

the following we vii i  speak of  “system performance at mlnis~* level a”

to describe a criterion of system performance at state a, a + 1, ...,

or H.

3
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2. Boundln& the Sy s t e m  Rel1~~btjjç~~ bj’ Means of and C ut s

Using £(~ (X)J as the measure of system performance , El-Neweihi ,

Proschan , and Sethuraman [ 6 J have developed an uppe r and lower bound

for the system performance level. These bounds are derived by comparing

the structure • to a ‘paralle l” system and a “series” system bu i l t

from the same components. Other comeon bounds for binary coherent systems,

such as the max—m m bounds ( 1 , the path-cut bounds ( 7 ), and the
Bonfer on t ou t , j~ ( 11) , have not h e n  g nt- r.a 11 :t-d t o  mult 1 s t .a t  c

systems where E(e(X)) is the system performance criterion . The

difficulty in doing this would be to define the notions of paths and cu ts

which such bounds require . Performance criteria such as E(~~(Xfl , or

the more general E[u(~ (X))J (u(’) a utility function) proposed by

~riffith 110), do not seem compatible with the notions of paths and cuts.

However , notions of paths and cutS can be developed when the minimum-

performance-leve l criterion i. used. (It should be noted that with an

appropriate choice of u( ), ~.rIffith ’s criterion of E[u(~ (X)))

reduces to the minimum-performance-level criterion.)

Definition 2 .1. A partition ‘1 ii a cut f o r  system I’.erforaance at

~~~~~~~~~~~~ if and only if •(x(1’)) m. A cut ~~~
‘ is a minimal

cut for systealerformance at minimum level a if and only if •(y) ‘a

for all y ‘ z(ø’). 0

Definition 2.2.  A partition .9 is a ~~jor s ~~ t.a perfo~~~ nce at

minimum level • if and only if •(x(.?)) a. A path .1 is a minimal

6 
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pat~~~~~~~~stemi~~erfon ance a~t~ mini level ~ If and only if

•(y) < a for all ~ ~
- x(9). 0

Readers wishing a more complete discu ssion of these two

definitions are referred to ( 5 ).

In much of the following we will for the sake of brevity simply

refer to mm cuts and am paths when the minimum system-performance

level is clear from the context. Also, itt light of the one—to—ome

correspo—adence between a partition ‘#‘ and the vector x(f), w wi~.i

interchangeably refer to mm cuts by ‘
~~
‘ or x(~’), and to mm paths

by .9 or x (~ ”).

Cons ider a multistate coherent system (C , •) w ith am paths

and mm cuts 
~~1, ~~~~~~~ . .‘  for its performance

at minimum leve l a. Define the functions P j (!) and K~~ (~~) by

means of the follow ~ n~t ~~u.iiit ies

- • f l  ~~~~~~~~~~~ j 1, ..., s , (2.1)

‘ (x) 1 . 1 — I
- -  

~~~(.
t ’
~~

)}

. 1 /7~ l(x j<xj(~~ j
) }  — 1~ ...~~ t .  (2.2)

7
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The function •~j
(.X) is called the ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

£~~~~~~~~n~Li~~ to .#.~~ and K
j
(x) is cal led the ~~~~~~~~~~~~~~

function corr~ sp ndifl& te 1~~. As the following theorem shows , the

func t ioning of the system at minimum level a is determined by

either its minimal paths or its minima l cuts.

Lheorem 2.1.

i) 1( ( 
~~~~ 

— LI 
~
‘ (& — max 

~ 
(!)) (2.3)

— j—i l~j<s

~~ 1
( ~ 

- /7 K ( z )  - am ~ ( 2 .4)
— .1 l~~1~~t

The proo~ follow. r e ad i ly  f rom ~vtinit ion s 2.1 and 2.2. 0

To establish bounds on the system reliability based on mm paths

and am cuts , we will require the following le as, due to Esary , Pro.chan,

and Walkup ( 8 j .

L e a 2 . l .  If T1, T2 , ..., T are associated random variables , then

n
Pr ( T  ‘ , ... , I ‘ t /7 Pr {T > t ) (2 .5)

1 1 n n --- i i
i—I

and

Pr (T
1 

< t
1~ 

..., I t )  /7 Pr{T
i 

< tij (2.6)
i— i

for any choice of t 1, ~~
. t~ . 0

8 
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L .* 2.2. If I — (T1, T2
, ..., T )  is assoc iated and

~~
‘
~~~~
‘ 

tk(T) are increasing functions of T, then

~~~~~~~~ 

E~~~(~~) are associated. 0

Theorem 2.2. (Path-Cut Sounds). Let X — (X 1, X2, ..., K )  be

associated . Then

t 5

17 Pr- i 4 (a) — 1) Pr {~~(X) ‘ a) < U Pr(p4 (X) — 1~ (2.7)
_j— i .1 i— i  .1

Proof. ‘ ~~
( X )  are increasing functions of X and so by

Lemea 2.2 are themselves associated. Hence , by Lames 2.1 and Theorem 2.1,

and the fact that ‘ ~~ is a binary-valued function ,

Pr($(X) > — Pr(K
1

(X) 0, ..., 
~~

(X)  > 0)

t

~ /7 Pr{sc (X) — 1) . (2.8)
i—i

To establish the upper bound , use Theorem 2.1 to write

Pr :(X) ~ a) — 1 — Pr(~~(X) C

— I — Pr( ç’1
(X) c 0, . .., ø 5 (X) 0)  . (2.9)

Since 1
(X) , ..., p

5(X) are increasing functions of I and therefore

by L e a  2.2 associated , we can apply L e a  2.1 to obtain

9
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Pr(*(X) > a)  1 — /7 Pr( 4(X) 0)
i—i

5

— U Pr( 
~ 

(X ) — 1) . (2.10)

0

Fer convenience , take Q
1

(M+ l) - 0 and the produc t over an empty set

of indices to be one .

Corollary 2.1. ( P a t h-C u t  Sounds t o r  Independent Components). Let

K1, ... , X be independent. Then

11 [1 
- 

~~~~ (1 - Q i
(k + 1))] H

m (Q)
j—l k0 .~~1~ j

S Il

~~. U 17 17 Q1
(k) (2.11)

j-l k—0 kI ci’

Proo!. By the definition of ø~~, and the independence of K1, ..., X ,

Pr~~~~(X) - 1) - Prj f l  ‘{X i>xi(.#~
) )  ij

• /7 Pr(X~ ‘ xi( .9) )  . (2.12)
1—1 1

10
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Since any i e C is in exact lv out subset , say P~~, of the partition

- (P~ , ... , P~ )

Pr(X ~ z 1(~~~ ) )  — i’ r (X~ k )  — Q1
( k )  when I t-

Thus

n N
Pr . (K) 1) — II Pr(X

t !. x j(.#’j)l — 
~~~ 

(2.13)
i—i k 0

and the upper bound follows from Theorem .~~..‘. i~~e lower bound follows

similarly. 0

~~~~~~~~ 2.2 and Corollary 2.1 provide lower bounds hasi-d upon cuts and

up~’er bounds based ;pe’n paths. -c next e~ ta bl1sh, in Theorem 2 . 3  and

Corollary 2.2 below , lower bounds based upon paths and upper bounds

based upon ~~~~~~~~~~~

Theorem 2.). (Max-MEn Bounds).

max (Pr ~ .
1

( X )  — 1)) c P(~ (X) m aj~ (Pr(. (I) — 1~~~) . (2.14)
l~ Jcs l~~j t

Proof. By Theorem 2.1 , for any choice of J • 1 , ... , s and

_j ’ — 1  t

~ •(~)>aj ~ ~~~~ (2.15)

11
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Hence

Ii 
~~~~~

(X) — 1) 
~~. 

Pr
~,( !) ~~ a) ~ Pr{~ 1

, (X — 1) (2.16)

for &ll 1 j ‘ ~ and 1 j’ t. The result follow s by aaziai~~ng

over j and minimizi ng over 1 ’. 0

The above result holds regardless of whether or not the components

are independent or even associated. When the components are associate d

we have the following.

Coroj~~.!~~i.2. (Max-Mm Bounds t . ’r Associated Components) If X is

assoc iated , then

N
max f7 17 Q 1

(k )  P ( - ( X )  > a)
l Jcs k—O

M
mm 1 — 17 /7 11 — 91

(k + 1)) (2.17)
1<J’~t k—O iEC~

Proof. By l4’me~-a .~.2 . the r*ndom variables ‘ X 1
-
~x 1 .9 )’  I • l • ~..

are associated . From Equation 2.12 and Lemea 2.1 ,

12 



n
Pr(~ (

~
) • ii • Pr 

~~ >
~~ 

‘ 0.1 1.1 i - i ’ J

n
> /7 Pr(X 4 z~ (.? )

~ . (2.18)
i—i j

Now applying the second .quatitv in Equation 1.13

N
Pr(~) (X) • 1) ‘ /7 / 7 Q~

(k) (2.19)
k-O

Applying th i s inequality in Theorem 2.3 yields the lower bound . The

upper bound follows similarl y . 0

The Bonferron i inequalities f ~ 3 can also be used to establish

r e l i a b i l i t y  bounds based upon paths and cuts.

Lcmea 2 . 1 .  (Bonferron i Inequal ities) . For arbitrary events B1, .. .,

t
I) P r ( E

1 
U F U ... LI I~~) ~ Pt (E

1
) (2.20)

i—i

ii) Pr(E
1 
U F.2 U ... U E~) I’r(E~ )

~.1

— Pr(F.4 
() E~) . (2.21)

1 . k—l
,j

1 )

- - ~- — --—----— -—---------- -—. — -———---—-



Applying the Bonferroni inequalities to  the events (
~~

(1) • 3),

j — l~~ ..., s , and (. ~ ( X )  • 0 , .j • 1, .... t yield , two more sets

of lower and upper ~‘ ~uds on the  system re liabilit~~.

Theorem 2.4. (Bonferroni Bounds).

.
‘

0 Pr (- (X) a) ~ PrL~~(X) — 1) ~2.22)
i — i

5 I-

u t  Pr (:(X) > m l ~ PrL (X )  — 1)
i— i  

.1

S

— t’ (I) • • 1) ( 2 . 2 ) )

.1 ck

iii) Pr($(X) a I — Pr(E (K) • 0) (2.24)
i— i  

.1

iv) ~r - ~~(X ) > m) c 1 - P r ( .  (~) • 0)
i— i  

I

+ Pr J .~~(X) 
~~~~~~~~~~~ 

0) . (2 . 2 S )
j ,k ” l  oj

The above theorem holds regardle ss of wheth r or r t  
~~~. X

1
’s -ire

or assoc i .;t. f. ~ndr u)flepondence we have

Coroll ary 2.). (Bonferroni Bounds for Independent Components). If

..., K are independent , then

14
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i) H;(Q) .1~ ~ 11 ~ Q~~(k)~~ (2.26)
i—i k0  j cP~

5 N s N
ii) H

tm
(Q) .~~. ~~ 

~~ /7 
~~~~~~~ 

— Z f7 17 Q~ (k) (2.27)

~~l k0  t&P~ 
j, ’l k.O

where 7 — (V°, ... , 
~
‘

t N

iii) H
m (Q) 1 — : !~ 17 ( 1 — ~ 1 (k + 1)), (2.28)

j—I k—O

t N
iv) H (Q) < 1 — 17 /7 ( 1 - Q 1(k + 1))

I—i k—0 icC~

N

~ /1 (7 ( 1 — Q1
(k + 1)) (2.29)

bE—i k0
.j<t

where ~ — (~0 
. . ,  ~~) 

a 

~ 
1~~.

Proof. Equation 2.13 and Theorem 2.4 establish part (i) of the theorem;

part (iii) follows similarly . To establish part (ii), it suffices to

show that

N

Pr {o (I) — ø~~ (X) — 1) • /7 (7 Q~ (k) . (2.30)
k—0

15
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Now by the detinit ion of 1 - m d  the independence ~ f K
1 . 

..., K

i’r -  (X )  - (X) • 1) • Fri [7 ~~ ~~ ,~ )vX 1 ( .~~)

n M
— Pr 17 i~~~ 

~ 
) )  — ~ 17 Q 1 (k)

~~~~~~ j *~~ 1 k—0 
~ v

k

(2. i i )

Part (iv) follows similarly . 0

The bounds es! m~ 1~~.r., J In ihe~’r,.n~ 
1.2.  2 . .  and 2. .. and

(o r ~- l lar ies 2.1, 2 . 2 , and ? .3 are direct  ~: ,-n ,- ra1t :at ions of the path—cut

bounds for binary systems deve io;-eJ by Es.~ rv  and Proschan 7 3, the max-

am hounds for bi~~~i- -. systems developed by Barlow and Proschan 1 1 1.

and the Bonferron i bounds developed by Messinger and Shooaan [11).

As for binary systems , the  mult istate max-mm lover bound seems

better than the path—cut lower bound (i.e., ~rovide~ a tighter bound)

for systems composed of very unreliable -or ~;’ ’ucnts , and the path—cut

lower bound seems better for systems composed of very reliable components.

Similarly, the max—am upper bound seems better than the path—cut upper

bound f o r  systems of highly reliable components, and the path—cut upper

bound seems better for systems of very unreliable components. Regardless

of which of these two bounds Is likely to do better for a particular

system , one probably should calculate both; since both bound pairs

16 
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involve the calculation of the sa~~ quantities , there is V e r y  little

extr a work in also computing the second pair whi1~ comput ing thee first.

Of course , if one is on~y~ computing lower bounds (or only upper bounds)

this co~~~nt does not apply.

rhe path-based Ilonterroni bounds (parts (i) and (ii) of Theorem

2..’ and Coroll.irv I) are most useful when component reliabilities

are low, and the cut-based bounds (parts (iii) and (iv) f Theorem 2.4

and CoroLlary 2.3) are most useful when component reliabilities are high .

In intermediate cases these bounds may p iovide  no useful informstion ,

since they may take values outside the range 10, 13 .

Example 2.1. Consider the following three-state coherent system (C, •)

consistfni: of 10 Independent components , and having mm —cut vectors as

follows:

(a • 1) , ( •)  I (a — 2)

( 1 , ~, 2. 0, 0, 1, 0. 1. 1 , 1) (1. 0. 2, 0. 1 , 2 , 2, 2 , 0, 2)

(1, 0, 2, 0, 0, 1, ) , 1. 2 , 0) (1 , 0, 2 , 0, ~~, 2 , 2 , 2 , 2 , 1)

(1, 0 , 2,  0. 2 ,  0 , 0, 0, 1, 1) (1 , 1 , 1, 1, 2 , 1, 2 , 2 . 0, 2)

(1, . 2 , 0, 2 , 0. 0, 0, 2 , 0) (1, 1, 1. 1, 2. 2, 2 , 2 , 2 , 1)

( 1 , 1, 1, 1. 0 . 1 , n , ~~, 1. 1’ ( 2 , 2 , 0, 2 . 2 , 2 , 2 . 2. 0, 2)

(1 , 1, 1, 1. 0, 1, 0 , 1, 2 , 0) (2 , 2 , 0. 2 , 2. 2, 2 , 2 , 2 , 1)

(1, 1, 1, 1, 2 , 0, 0, 0, 1. 1) (1. 2 , 2 , 2 . 0, 1, 0, 1, 0, 2)

(1, 1, 1. 1, 2, 0, 0 , 0 , 2 , 0) (2 , 2 , 2. 2 , 0 , 1, 0, 1, 2 , 1)
(2 , 2 , 0, 2, 0, 1, 0, 1. 1, 1) (2 , 2, 2 , 2 , 2 , 0 . 0, 0, 0, 2)

(2 , 2 , 0, 2, 0, 1, 0, ~~, 2. 0) (2 .  2 , 2 , 2 , 2 , 0, 0, 0, 2 , 1)
(2 . 2 , 0, 2, 2 , 0, 0, 0, 1, 1) (2 , 2 , 2, 2, 2 , 2 . 2 , 2 , 1, 1)
(2, 2, 0, 2, 2, 0, 0, 0, 2 , 0) (2,  .~~, 2, 2, 2 , 2, 2 , 2 , 2 , 0)

17
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S

We ~~i I i  t.t. ~~- the ~-omponent—perZ ..rm.in& - e .— dist ribut Ion ~~ r-i x , ~ , t o  be

1.0 0.M 0.5

1.0 0.8 0.4
1.0 0.9 0.8
1.0 0.5 0.1

- 
1.0 0.6 O . S
1.0 0.9 0.8
1.0 0.7 0.6
1.0 0.5 0.1

1.0 0.7 0.4

1.0 0.6 0.2 
-

Calc ulated rel iabiliti es and reliab i lit y h~~un~I~-. are .ts fo l lows .

(~~~~npttr it ions ~~~ e d~~ni’ ~‘n a ~
- o~ipu t e r  since a d re.. computation of

H, (~~ 
) . for example, wou ld be .-e rv d ii e~ult t e ~ J. by h.mnd . )

Pri~~(X )  > 1? —

1.ower Upper

Path-Cu L~~ otuu s . ~9 ~.. •. .999269

Max-Mm Bounds .8 .99896 3
Bonferroni Path Bounds -6 . 04 ’ ~ 4.82

Bonferronl Cut Bowid~ .9934 f .999662

~~~~
. 2 Pr ( $ ( X )  2~ — .3 176S2

1.cive r Upper
P a t h- ( u t  f%oiind’~ .237988 .900234

Max- Mm Bounds .14

B(,nferron I }’4t h Bounds -9 .49076 2 .2 2 2 7 8

Bonferron i C itE Bounds — .14466 .539065

Note that some of the Bonferron i bounds are outside of the region 10 ,11.

18
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3. Boundin,g the System ReltabiU~~ Usink Modular Decoaposi Lion s

The concept of a module, a subset of the components of a system

having its own structure fun ct ion and acting like a single component

in relation to the rest of the system , is well known in reliability ( 3 1.
For large , complex systems it is almost inevitable that modules will

exist , simply because it seems to be inherent in man ’s way of thinking

to break a large problem into a number of smaller problems. In

system design this translates into sequentially breaking a complex

machine into a number of systems , each system into subsystems , each

subsystem into a number of components, etc. This results in a

hierarchy of modular decompositions of the overall machine . There are

two important reasons to consider exploiting the modular decompositions

of a system in developing reliability bounds. The first , and probably

the most important from a practical point of view , is that the

calculation of all the am paths or all the am cuts for a very complex

system can be Incredibly involved and time consuming. For example , the

so—called “Rasmussen report” (153 on the assessment of accident risks

in U.S. comsercial nuclear power plants includes two appendices of

approximately 550 pages each, which are entirely devoted to descriptions

and listings of the fault-tree models used for analyzing boiling-water

and pressurized—water reactors. To calculate directly all the mm cuts

or all the am paths for such fault-trees is not feasible .

8y exploiting modular decompositions, the computations involved

in computing reliability bounds can be greatly reduced; indeed for

19 
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many complex systems, thi s would be the only pi .tctie. * 1 (h um .‘

computation.t l point of v iew ) way to compute reliability bounds. The

second reason to use modular decomposition s in computing reliability

bounds for the system is that the bounds produced .tre •ilways as

good as, and usually better than , the ones resulting from a more direct

app roach.

The fundamental idea in exploiting a modular decomposition of a

system to obtain bounds on the system reliability is to first determine

lover-bound victors on the performance distribution of each module, and

then to treat these lower—bound vec tor s es If they were actn.el

performance distributions and the modules as if they were components

in determining a lower bound for the reliability of the orj~.iniz1n ~

structure which relat es the module performances to the system performance.

Bodin ..
~ 3 has shown that for binary systems following such a procedure’

wil l result in tighter path-cut bounds than those obtained directly.

We will establish similar results for multi-state systems .

Consider a multistate coheren t system consisting of independent

components , having structure function 
~~, 

and component performance-

JI~ tr ibution matri.x Q. Define L
4

(Q) — (L (Q) , L~~~(Q) , .. ., L~ (Q))

as follows:

L (Q) • max {D
~~~(Q)j, (3.1)

20
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where

D (Q) — 1 , (3.2)

and

H
D,(Q) — 17(1 — /1 17 (1 — Qi(k + 1))) (3.3)

j— l  k—0

and ‘#1, 1~~, ..., in the above equation are the am cuts

relative to system performance at minimum level I. The quantity

D~~Q) is s imp ly the path-cut lower bound for the system

reliability relative to performance at minimum level i- .  One might

naturally conjecture that L (Q) • D~(Q) for all a (which is

equivalent to conjecturing that D (Q) is a decreasing functIon),

but, perhaps surprisingly, this is not so, as the following example

shows.

~~~~~~~~~~~~ 
H • 2 . C • (1. 2, 3’

PUn—Cut Vectors for System Mm -Cut Vectors for System
Performance at Min imum_Level m”l Performance at Minimum Level 2

(1, 0, 0) (1, 1, 1)
(0 , 1, 0)
(1, 0, 0)

~_J 1° l4 ~~_
1 .2 .1

D~~(Q) — (1 - (1 — .2) 2
( 1 — ~~)J

3 
D~ (Q) • 1 — (I —

• .016 • .271.

21
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Since L~ (Q) — max {0t (Q)) < max {Prt- (X) > • Pr~ 4(X) a},
m< t<M

L (Q) is itself a lower bound on the syste m reliability at minimum

performance level m , and i . indeed a generally better bound than

D (Q). Thus, we have proved the foll owing corollary .

i iv  LI. D (Q) < L
,

(Q) ~ H,(Q). 0

In add ition to providing a better lower bound than D~
((
~~, 1 (Q) also

has the advantage oh being itself • performance—distribut ion vector

and can thus he used in computing system reliability bounds

sequentiall y via modular decompositions .

The following lema , which viii be used in proving the main

result of this section , shows t h.lt the more reliab le the components,

the better p~ t~~—c i ’ ~.- ,r h~ un~t is on the system reliabilit y .

Le~~ a3.i . If Q < 
~~. then !.~ (Q) .

Proof. Since Q ‘

t H
I)
t (Q) — Fl (1 — 11 17 ( 1 — Q1(k+1))Jj•l k.O 

i.

t H 
—

~~. 17( 1 — 17 17 ( 1 — q (k-”I))J — 1) (Q) (3 .4)
k —fl  -~~ 

I

for i — I , ..., M. Thus 

__
~~~~~~~~___i__~~_ _~ __ __

~~~~~~~~~~~~~~~~~~~
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A

(Q) • max {D (Q) )  < sax (D
~

(Q) } • L (Q) . (3.5 )
a<t’-Il ‘ 0

1 . a  3.2. Suppose that the coherent structure • can be decomposed

into r modules having structure functions , 
~~~~~~ ~~ and that the

system performance at minimum level n is dictated by the module

0 1performances according to a single cut ~ • (C , C , ... , . ) ,  i.e.

a) - 

i-I ~~~~
(x)>x ~(~ ’)) . (3.6)

Furthermore, assume that all components are independent . Then

r
D;(Q) LI ~ (Q) (3.7)

i— l

Proof. Diagramatically, we can express the system in terms of its

modules as follows .

- - - 

• 1(~
)>x

1(~~
)) - - -

- 

2(~
)>z

2
(~~’)) 

—

.. ---

— — — I
r(!~~~r~~

’
~~

23 
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WrIte s 1(()  ~ 
in terms of Its minimal—cut struct ure

f u n c t io ns , ‘ 1l~~~’ 
,(x), ..., .i~~

(x). as follows :

• t i
1

( )  ~~~~~~~~ J—l 
~(x)~ — 1 , ..., r . (3.8)

Then

x (~~)(Q) • Ii P t  . ( x)  • ii i — 1 r
i j•1

*Now consider •i new system ~ obtained from ; in replacing &‘.e

replicated component in each sin—cut structure function 
~~~~~~ 

by

an independent but equally reliable component . L et X be the random
0 *vector of component performai.- us for • , and Q be. the component-

*
perf ormance distribution matrix for ~ . i)i.ig r .irr~atic a 11v ,

X 1 ‘11 ’ l2 ‘ I t
1

X 2 ~ 2 1 ’ 22 ‘

~~~~

• ‘2t
2

.. . — — — ‘Kr r i  r2  r t r

24
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~
y th. independence of components in •

t

Pr(, * (X * ) ‘ a~ — U 17 Pr{.c
1 

(X) — 1) (3.10)
1—1 j — i

and so by Equat ion 3.9

r x (V)
) • U D (Q) . (3.11)

i—i X~

*
$ow the sin cuts of • and • are identic al, and each sin—cut

structure function is obtained by applying the “paralle l operator ”

LI to  •
~~~~

•
~~~ 

for some choice of 
~~

• •

~~~ ~r (recall
r

there is no overlap of components among the various modules ). Thus ,

• fl (Q)• Co~~ ining this result with Equation 3.11,

r x (0’ )
LI D

t 
(Q) • P1;.(Q) .~~. 

1),A~~~ ) • D (Q) . ( 3 . 1 2 )

i—i i 0

L.s 3.3, If Q < Q .  then H
,
(Q) H,(Q) .

Proof. This le~~~ is a restatement of Theorem 4 .2.1 in ( 6 3,

We are now in a position to establish the main result of

this sec tion .

25
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rheor en Li. l e t (C, •) be a mu l t i s ta te  coherent system of

Independent components. Suppose (C, •) has a modular decomposition

into r modules ~~, I — 1, . ., , r , wi th module organizing

structure ,. Then

I. (.W’ ( Q) )
H (Q) — H L w  ( Q ) )  

~ 
‘- > L ( i  ( Q ) )  1 (Q) , (3.13)

V 

~ ( j  (Q))  — I

~

where

H (Q) L (Q)

•w (Q)  
, ~~

H (Q) 1. (Q)
• X r

Proof: Let 1(x )  — (x
1
(& , .. . Z~j X ) )’  To establish the firs t

equality , note that for any a - 0, 1 , ..., H

N (Q) • F’r~~~(~) 
) a) • , I , ( ) Pr~ X —

— 
~: 

I {~~( ( ) ) } P r (X  • & (3.14)

For any y C let A (y) • : x(z) • ~) .  Since

26
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L1 (Q) • 

~ 1
~
,(,y:)-

~~~ 
) Pr(! —

~~Sr

— 

•,,~~r 
I
(*(X).5}

Pr
~~

(& z • H (JV
L
(Q)). (3.13)

To establish the inequalities, note tha t by applyi ng

Corollary 3.1 to the org anizi ng structur e I end the modules

~~~~~~~~ 
we have

L,(Jr (Q))

H (7 (Q) ) L (7  (Q) )
I, 

~~

and

.W (Q) 7 (Q) , (3.16)
L 

- 
L

Applying Le as 3.1 and 3.3 yields

.~~. 
H (  ~~(Q)) and L.(JrL

(Q)) 
~~ . L~( ‘I’~ ( Q) )  . (3.17)

It remains only to show that L~(?(Q)) L.
,
(Q). Let

denote th. minimal—cut structure functions for • performing at mtni~~a

27
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•1
leve l t , and let •1

(x) • (
j
(~ 1 (x). ‘ ~~~~~~~~ Let .‘

J

be the minimal-cut structure functions !~~r (performing at minim um

level 1, since i s bInary-valued). Then the collection

I — 1. . . . . t ~. k — 1. . . . t
1

) ar• the minimal cuts for •
performing at minimum level t , ~.tnce: - 0 implies — 0,

wh ich implies • 0, which implies • — 0; wIth J f ixed and Ii

varying, the are dist inct , because they are the sin cuts for

and for k varying they are distinct because no component is in

more than one module; each is minImal for • since each is

minima l for • , . Thus

t t ••
D

t (Q) — H Ii Pr y - ., 1) . (3.18)
j — l k—l

Now by Lemea 3.2

r x ( #  )
D (Q) 

,~~. U D ~ (Q)
¶1 1.1 

4j

where ‘0 ii the sin cut correcponding to f.~ . Since I. (Q) > D (Q) ,
i i

r x ~o )
(Q) U L -~ (Q) • H’ (7 (Q) ) . (3.19)

1—1

28
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Using this result we can wr ite

t t
Dt ( 7 (Q)) - (7 H’ (~~ 

(Q) ) > 17 (Q)
* I j _ ,  ci A j ., I

t t
i

— 11 fl Pr(is 4~ — 1) . (3.20)
j 1  k— l ‘

Cøsbining this result with Equa t ion 3.18 yields

‘ D (Q) £ — 0, 1, ... , N . (3.21)

Finally,

Lm( 1’ (Q)) • sax ( D ( J  (Q))) ‘ sax (Dt
(Q)}  • L (Q) . (3 .22 )l’ ~ <t< M I m’ctcM

It is also possible to use modular decompositions in establishing

upper bounds on th. system reliability. Since all results and their

proof. are c lose analogue s to thos e which were developed for the

path-cut lower bound , we will simply state without proof th. main

th•orsa , omi t t inS the prelimi nary results .

Let

E~ (Q) • I

and

£ 
5t N

E (Q) LI (7 17 Q4
(k) (3.23)

J1k .O k
ic?

1
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where .#

~~
, ... ,  .? are the sin paths relative to syste m performance

at si tu level t .  (Th. quantity E~ (Q) is simply the path upper

bound for the system rel iabil i ty relative to performance at minimu m

level i.) Let

U
m
(Q) • aim ( E L

(Q)) and U (Q) — ((J°(Q), ... , U~~(t )) . (3.24)
0<t< - m

It is easily verified that U,(Q) ~ H,
(Q) , and that U,

(Q) is a

performance-distribution vector.

Theorem 3.2. Under the same hypotheses as Theorem 3.1,

~U (.W (Q)) ~H (Q) — H (JY (Q)) I * ~ U ( v i  (Q) ) < U (Q) , (3.25)
• I 

~~H ( W(Q ) )~~~ * A
$ A

where
U (Q)

U (Q) .

r 0

We will complete this section with an example illustrating the

dec om position—based method of calculati ng system reliability bounds .

30 
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!M~~!..i.1
. Consider the following three—state cobstent system

(C , •) consisting of 10 independent components , and having a modular

decomposi t ion into 3 modules with structures x 1, x
2
, A

3 
and

organizing structure $. The f irst module consists of components

1, 2, 3, 4, and has sin—cut vectors as foll ow s :

x 1( ) _~ 1 (s 1) ‘ 2 (.—2)

(0, 1, 0, 1) (1 , 0, 2, 0)

(2 , 0, 0, 0) (1, 1. 1, 1)
(2 , 2. 0, 2)

The second module consists of components 5, 6, 7, 8, and has a

structure identical to that of the first module. The third module

consists of c~~~onents 9, 10 and has sin-cut vectors:

> 1 (ml) x 3(’) 2 (.2)

(1, 1) (0, 2)

(2, 0) (2, 1)

The organizing structure * h.s mm —cut vectors

*(.)  -~~ 1 (m l) ~ 2 (~~2)

(1, 0. 0) (1, 2, 1)
(2 , 0, 1)

(2 , 2, 0)~~

31
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From the aim -cuts of 
~~~~
, ,. ~~, and * &‘nc can c ompute the sin-cut

vec tors for •, which turn out ~~t’ be iden tical to the sin—cut vectors

of Example 2.1. Therefore , we have found a modular decomposition of

that system. Taking the component performance dIstributions to be

identical to those of Example 2.1, we can c ompute

1 (Q) — (1.0, .993449, .237988)

H~(Q) — (1.0, .996729, .317652)

U
,

(Q) • ( 1 .0, .999269, .900234)

L (Q) - (1.0, .979308, .808830)
xl

H (Q) • (1.0, .98120o , .833000)
x l

U (Q) • (1.0 , .988336 , .930811)
‘1

I. (Q) — (1.0, .963724, .657930)
‘ 2

H (Q) — (1.0, .969400 , .676000 )

U (Q) — (1.0, .982612, .914354)
x2

I. (Q) — (1.0 , .312000 , .140000 )

H (Q) • (1.0 , .360000 , .140000)

U (Q) — (1.0 , .392000, .140000)
x 3

— (1.0. .995229, .252572)

H,(/ ’ ( Q)) — (1.0, .995229, .274072)

32
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L,Ur (Q) ) • (1.0, .996729, .300184)

• (1.0, .996729. .317652)

— (1.0, .996729, .390005)

H (W (Q)) - (1.0, .999269, .370486)

• (1.0, .999269, .448339)

In all cases, L ( ~) i. identical to D,(), and U~ ( )  to E•
( ’).

Note that the two computations of the system reliability, direct and

decomposition—based , agree . Also, note that the decomposition—based

bounds are indeed tighter than the direct bounds which were computed in

Example 2.1 and are repeated here .

A comparison of the computer times required to compute the

direct bounds and the decomposition—based bounds for the examples may

serve to illustrate the computational advantage of exploiting modular

decompositions . A ll  bounds were computed via a single program written

in BASIC and running on a Digital Equipment Corporation System 2060
a

computer. The program used 512.14 CPU-seconds to compute the path—cut
a

bounds and system reliability directly , and a total of 3.66 CPU—seconds

to compute the path—cut bounds and reliabilities for each modul. and

the organizing structure (i.e., the figures shown in example 3.2).

*
These figures reflect the substantial calculations necessary to
determine the sin paths From the sin cuts for each system.

33 
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